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We present a model for smectic elastomer membranes which includes elastic and liquid-crystalline degrees
of freedom. Based on our model, we determined the qualitative phase diagram of a smectic elastomer mem-
brane using mean-field theory. This phase diagram is found to comprise five phases, viz., smectic-A-flat,
smectic-A-crumpled, smectic-C-flat, smectic-C-crumpled, and smectic-C-tubule phases, where in the latter
phase, the membrane is flat in the direction of mesogenic tilt and crumpled in the perpendicular direction. The
transitions between adjacent phases are second-order phase transitions. We study in some detail the elasticity
of the smectic-C-flat and the smectic-C-tubule phases which are associated with a spontaneous breaking of
in-plane rotational symmetry. As a consequence of the Goldstone theorem, these phases exhibit soft elasticity
characterized by the vanishing of in-plane shear moduli.
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I. INTRODUCTION

Liquid crystal elastomers �1� have attracted much atten-
tion in recent years because they uniquely combine the rub-
ber elasticity of polymer networks with the anisotropic prop-
erties of liquid crystals �2� and, therefore, provide exciting
challenges for fundamental research �experimental and theo-
retical� and open new possibilities for novel device applica-
tions, for example, in sensors and actuators. Essentially, any
phase known from conventional liquid crystals can be made
in elastomeric form, such as, e.g., nematic, smectic-A �SmA�
and smectic-C �SmC� phases. Among the various phases,
nematic elastomers have been studied most extensively to
date. This research brought about considerable insight into
the static and dynamic elastic properties of nematic elas-
tomers, see, e.g., Refs. �3–13�. Smectic elastomers are, at
least from the theoretical standpoint, considerably less well
understood than nematics. However, there exists substantial
literature on their synthesis and their experimental proper-
ties, see, for example, �14–21�, and references below. Usu-
ally, smectic elastomers are synthesized by crosslinking side-
chain or main-chain liquid crystal polymers. The elaborate
crosslinking techniques available to date produce elastic net-
works that stabilize the liquid-crystalline order so that mon-
odomain or single crystal samples result and they leave at the
same time sufficient mobility for the mesogenic component
to reorient, e.g., when mechanical or electrical fields are ap-
plied. With these methods, one can very efficiently synthe-
size from small amounts of material experimental samples in
the form of free-standing thin films or membranes, see Fig.
1. Such films have been produced as thin as 75 nm �22�,
which corresponds to a thickness of about 15 smectic layers,
given that the average layer thickness is roughly 5 nm. Ex-
periments on such films include measurements of the elec-
troclinic effect in planar or flat samples �22,23� and measure-
ments of elastic constants of smectic elastomer balloons
�24,25�, samples where smectic elastomer membranes have
been inflated to spherical bubbles similar to the inflation of
soap bubbles from flat soap films.

Smectic elastomers membranes are possible realizations
of anisotropic membranes �26�, a class of systems that has

been studied intensively in recent years. Radzihovsky and
Toner �27� discovered that permanent in-plane anisotropy
qualitatively modifies the phase diagram of polymerized
membranes in that it leads to intermediate tubule phases be-
tween the usual flat and crumpled phases. Such a tubule
phase is a hybrid between the flat and the crumpled phases;
the membrane is flat in one direction and crumpled in an-
other. More recently, Xing et al. �28� and Xing and Radzi-
hovsky �29� studied nematic elastomer membranes in which
in-plane anisotropy is spontaneous rather than permanent.
These membranes were shown to have a rich phase diagram
comprising isotropic-flat, isotropic-crumpled, nematic-flat,
nematic-crumpled, and nematic-tubule phases. Because of
spontaneous breaking of in-plane isotropy, the nematic-flat
and the nematic-tubule phases exhibit a soft elasticity that is
qualitatively distinct from the elasticity of the flat and tubule
phases of permanently anisotropic membranes.

In this paper, we theoretically study idealized smectic
elastomer membranes. Our idealizations, adopted for sim-
plicity, are as follows. First, we assume that the thin films
consist of only a few smectic layers such that their height can
be neglected in comparison to their lateral extension, i.e.,
that the membranes can be described as two-dimensional
manifolds in three-dimensional space. Second, we entirely
neglect self-avoidance, i.e., our model membranes are so-
called phantom membranes. Third, we leave aside heteroge-
neities such as random stresses which must be present in any
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FIG. 1. Sketch of the cross section of �a� SmA and �b� SmC
elastomer membranes. The membranes consist of a few smectic
layers such that their height can be neglected in comparison to their
lateral extension.
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amorphous solid on grounds of mechanical stability. More-
over, we focus on membranes crosslinked in the SmA phase
that can exhibit, like nematic elastomer membranes, sponta-
neous in-plane anisotropy and, therefore, by virtue of the
Goldstone theorem, can have modes whose energy vanishes
with wave number. In bulk nematic elastomers and the cor-
responding membranes and in bulk SmC elastomers, these
Goldstone modes lead to the fascinating phenomenon of soft
elasticity whereby, in an idealized limit, certain elastic
moduli vanish and thus certain deformations are free of re-
storing forces. By assuming crosslinking in the SmA phase,
we can expect to find these unusual properties also in the
membranes under consideration here.

In the following, we develop a theory for smectic elas-
tomers. This theory has some similarities to the theory for
nematic elastomers membranes presented in Ref. �29�, but it
also has considerable differences related to the fact that the
isotropic-to-nematic phase transition is generically a first-
order transition whereas the SmA-to-SmC transition is ge-
nerically continuous. As a result, the phase diagrams of nem-
atic and smectic elastomer membranes have qualitatively
different topologies. We find that the mean-field phase dia-
gram for a smectic elastomer membranes features SmA-flat,
SmA-crumpled, SmC-flat, SmC-crumpled, and SmC-tubule
phases. The phase transitions between the phases are second-
order transitions. Among the elasticity of the various phases,
that of the SmC-flat and the SmC-tubule phases is most in-
teresting because in these phases, in-plane rotational symme-
try is spontaneously broken and thus, due to the Goldstone
theorem, the membrane exhibits soft elasticity. We investi-
gate the elasticity of these phases in some detail.

The outline of the remainder of this paper is as follows.
Section II presents our model for smectic elastomer mem-
branes. First, some fundamentals of Lagrange elasticity
theory are reviewed. Then it is explained how to properly
combine elastic and liquid-crystalline degrees of freedom to
produce a model elastic energy that has the appropriate in-
variance properties. This elastic energy is presented and its
physical contents are explained. Section III analyses our
model in mean-field theory to determine the phase diagram
qualitatively. Sections IV and V, respectively, treat the elas-
ticity of the SmC-flat and the SmC-tubule phases with em-
phasis on softness. Section VI, finally, contains some con-
cluding remarks.

II. MODEL

Physical membranes are generically two-dimensional
manifolds embedded in three-dimensional space. Though it
can be worthwhile, e.g., when doing field theory, to consider
generalizations to D-dimensional manifolds in d-dimensional
space, we will restrict ourselves here for simplicity to the
physical case. Generalizations of our model to higher dimen-
sion will be straightforward.

To describe smectic elastomer membranes, we need to
establish a certain amount of notation. First, let us define
what we mean by reference space. This is the space occupied
by membrane in its reference confirmation, which we take to
be flat. We denote two-dimensional vectors, such as refer-

ence space vectors, in bold face and label their components
by indices from the beginning of the alphabet, a ,b ,c=1,2.
We employ the framework of Lagrange elasticity theory. To
this end, we label mass points in the undeformed membrane
by a reference space vector

x = �x1,x2� � �x,y� . �2.1�

Upon deformation, the membrane assumes some confirma-
tion in the three-dimensional embedding or target space. We
denote target space vectors with arrows and label their coor-
dinates with indices from the middle of the alphabet, i , j ,k
=1,2 ,3. In particular, we denote the position in target space
of the mass point with intrinsic coordinate x by

R� �x� = „R1�x�,R2�x�,R3�x�… . �2.2�

Unless stated otherwise, the summation convention on re-
peated indices is understood. This applies to the reference
and the target space. To keep our discussion as simple as
possible, we use orthonormal target space basis vectors êi
with components êi,j =�ij satisfying êi · êj =�ij and choose the
reference space basis vectors êa to form a subset of the set
�êi� as we can because the reference space is a subspace of
the target space.

To describe smectic ordering, we employ the unit layer

normal N� �x� and the Frank director n��x� which describes the
local orientation of constituent mesogens. n� can be decom-

posed into its components parallel and perpendicular to N� ,

n� = n�N� + c� , �2.3�

where N� ·c� =0 and n� =	1−ci
2, and with c� being called c di-

rector. To facilitate a discussion of tangent plane vectors such
as c�, it is useful to introduce an orthonormal basis of tangent
plane vectors t�a satisfying

t�a · t�b = �ab, �2.4a�

ta,ita,j = �ij − NiNj . �2.4b�

Any tangent plane vector b� can be represented in terms of
this basis, in which case we denote its components with a

tilde, i.e., b� = b̃at�a. For the c director, in particular, we have
c� = c̃at�a. Below, c̃a will become a very important quantity and
thus we would like to stress here what it stands for physi-
cally: c̃a represents the components of the c director in the
orthonormal tangent-space basis defined by t�a.

Now, we will seek an explicit representation of t�a. Distor-
tions of the reference membrane can be described by the
Cauchy deformation tensor �= �30,31� with components

�ia =
�Ri

�xa
� �aRi. �2.5�

The vectors T�a defined by Ta,i=�ia lie in the tangent space of
the membrane. From these, we can construct the desired or-
thonormal tangent plane basis vectors via

ta,i = gab
−1/2Tb,i or t�a = gab

−1/2T�b, �2.6�

where
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gab = T�a · T�b or g
=

= �= �= T �2.7�

is the metric tensor measuring distances in target space be-
tween neighboring points, dR2=gabdxadxb. By construction,
g
=

is invariant under rigid rotations in target space,

Ri → Ri� = OT,ijRj , �2.8�

where O= R is a target space rotation matrix, and it is positive
semidefinite. Note that Eq. �2.6� implies the relation

b̃a = gab
−1/2�bibi �2.9�

between the components of a tangent space vector b� relative
to the bases �t�a� and �êi�, respectively.

Below, we will investigate the various phases of smectic
elastomer membranes. The equilibrium confirmations of the
membrane �i.e., equilibrium values of its elastic degrees of
freedom� in these phases are characterized by certain equi-
librium deformation tensors

�ia
0 = �aRi

0, �2.10�

or alternatively, up to global rotations in target space, by
equilibrium metric tensors

g
=

0 = �= 0��= 0�T. �2.11�

Conventionally, elastic energies are formulated in
Lagrange elasticity theory in terms of the Cauchy-Saint-
Venant �30–32� nonlinear strain tensor

u= =
1

2
�g
=

− g
=

0� . �2.12�

This tensor will play an important role further below when
we analyze the elastic properties of the soft phases of smectic
elastomer membranes.

Having defined various variables describing elastic and
liquid-crystalline degrees of freedom, we will now turn to
construct a model elastic energy for smectic elastomer mem-
branes. This requires some care, because on one hand, the

liquid-crystalline fields n� and N� live in the target space, i.e.,
they transform as �rank 1� tensors in this space and they are
scalars in the reference space. The metric tensor and the
strain tensor, on the other hand, live in reference space, i.e.,
they are rank 2 tensors in reference space and scalars in
target space. Elastic energies, in general, are invariant under
rigid rotations in the target space and under the symmetry
transformations of the reference space. Our reference mem-
brane is a flat SmA one, and thus our model elastic energy
has to be rotationally invariant in target and reference space.
This requires that we be able to construct combinations of
liquid-crystalline fields and reference space elastic variables
that are rotationally invariant in both spaces.

Our approach to construct these combinations is based on
representing tangent space vectors in terms of the basis �t�a�.
This approach is intimately related to our approach for com-
bining elastic and liquid crystalline degrees of freedom in
bulk liquid crystalline elastomers �33–36� which is via ex-
ploiting the polar decomposition theorem �37�. To motivate
the approach taken here, let us consider the transformation

xa → xa� = OR,ab
−1 xb, �2.13�

where O= R is a reference space rotation matrix. Under this
simple change of basis in reference space, �ia→�ia�
=�ibOR,ba

−1 , and

gab
n → OR,acgcc�

n OR,c�b
−1 , �2.14�

for any power n. For our tangent-space basis vectors, this
leads to

t�a → t�a� = t�bOR,ba
−1 . �2.15�

Since a tangent-space vector b� does not change under the

simple change of basis �2.13�, we have b� = b̃at�a= b̃a�t�a� with

b̃a� = OR,abb̃b. �2.16�

Equations �2.14� and �2.16� imply that combinations of the

form b̃agab
n b̃b are invariant under the transformation �2.13�.

We will apply this approach to the c director. This then al-
lows us to construct our model elastic energy from terms of

the form �N� ·n��2=1− c̃a
2, c̃agabc̃b or c̃auabc̃b, etc., which have

the desired invariance properties.
In what follows, we will use the metric tensor, as opposed

to the deformation tensor or the strain tensor, as our order
parameter field for confirmations. This approach has two ad-
vantages: First, it is independent of the actual orientation of
the membrane in the target space �as it would if we used the
strain tensor�. Second, the metric tensor provides for an in-
tuitive distinction between the different phases, i.e., the two
eigenvalues of the equilibrium tensor g

=

0 encode how much
the membrane is extended along the principal axes in refer-
ence space. In a flat phase, both eigenvalues are larger than
zero. In a crumpled phase, both eigenvalues vanish. In a
tubule phase, where the membrane is extended along one
principal axis and crumpled along the other, g

=

0 has only one
nonvanishing eigenvalue. To determine the liquid-crystalline
order of our smectic elastomer membrane, we will use as
order parameter fields the components c̃a of the c director in
the basis �t�a�. If both equilibrium values c̃a

0 vanish, the direc-
tor has no component in the smectic plane and the membrane
is in a SmA phase. Otherwise, it is in a SmC phase.

After this prologue, we are now in the position to write
down our model. Overall, the total elastic energy density f of
a smectic elastomer membrane will be of the form

f = f iso + f tilt + fcoupl + fbend. �2.17�

In the following, we will for briefness often refer to energy
densities somewhat loosely as energies. f iso is the well-
known stretching energy of isotropic polymerized mem-
branes �38�. In terms of the metric tensor, it can be formu-
lated as

f iso = t tr g
=

+
1

2
B tr2 g

=
+ � tr ĝ

=

2, �2.18�

where ĝab=gab− 1
2�abgcc is the traceless variant of the metric

tensor. B and � are, respectively, the bulk and shear moduli
of the membrane. t is a tunable parameter. In mean-field
theory, f iso predicts a second-order transition from a flat to
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crumpled phase when t changes sign from positive to nega-
tive. Real samples of smectic elastomers are essentially in-
compressible. To strictly enforce incompressibility, we had to
use a term 1

2B�det g
=

−1�2, which fixes the membrane volume
for B→�, rather than 1

2B tr2 g
=
, which enforces incompress-

ibility only at small but not at large strains. The more general
term, however, would add algebraic complexity to our model
without that it would change the results of our Landau-type
theory qualitatively. In the equilibrium SmA-flat phase of our
smectic membrane, the director prefers to be parallel to the
layer normal, and there are energy costs associated with de-
viations from this equilibrium, which are proportional to

sin2 � and sin4 �, etc., where � is the angle between the N�

and n� . This leads to the tilt energy

f tilt =
1

2
rc̃a

2 +
1

4
v�c̃a

2�2, �2.19�

with an adjustable parameter r. In mean-field theory, f tilt pre-
dicts a SmA phase, where the c director vanishes, for r�0
and a SmC phase, where the director has a component in the
smectic plane, for r	0. fcoupl is the coupling energy between
the elastic and the liquid-crystalline degrees of freedom.
When keeping only the lowest-order terms permitted by
symmetry, it is given by

fcoupl = − 
1gaac̃b
2 − 
2c̃aĝabc̃b, �2.20�

where 
1 and 
2 are coupling constants which we assume to
be positive so that the coupling favors alignment of the c
director and the principle axes of the metric tensor. Finally,

fbend =
1

2
K��a

2R� �2 �2.21�

is a bending energy with a bending modulus K. In what
follows, we can often disregard bending terms because they
are of higher order in derivatives than the other contributions
to the total elastic energy. At certain instances, however,
namely when we deal with soft elasticity, bending terms will
be important to ensure mechanical stability.

In bulk elastomers, the bulk and the shear moduli are
typically of the order of 109 Pa and 106 Pa, respectively. The
coefficient of the fourth order term in the tilt energy is of
order 106 Pa in smectic elastomers �39� as it is in conven-
tional smectics �40�. We assume, that the orders of magni-
tude of corresponding quantities in our model follow the
same hierarchy. Moreover, we assume that the coupling con-
stants 
1 and 
2 are considerably smaller than the other elas-
tic constants. Thus, our hierarchy of magnitudes is B��

v�
1

2.

III. MEAN-FIELD PHASE DIAGRAM

As mentioned above, the stretching energy of f iso of iso-
tropic tethered membranes predicts a crumpling transition,
and the tilt energy f tilt of smectic liquid crystals predicts a
transition between SmA and SmC. Through the coupling en-
ergy fcoupl, there is an interplay of conformational order and
liquid-crystalline order. By simply combining the phase char-

acteristics of conventional smectics and conventional poly-
merized membranes, we expect that this interplay leads to
the following phases: SmA-flat, SmC-flat, SmA-crumpled,
SmC-crumpled, and SmC-tubule phases. Naively, one might
also expect a SmA-tubule phase. Such a phase, however,
does not occur because any anisotropy in g

=
acts like a tem-

perature shift leading to a nonvanishing equilibrium c direc-
tor.

To study the phase diagram in detail, we minimize the
total elastic energy �2.17� over the metric tensor and the c
director for given t and r. To simplify this minimization, we
choose our coordinates in reference space such that the met-
ric tensor is diagonal,

g
=

= �g1 0

0 g2
� , �3.1�

where g1 and g2, which are non-negative, are the two eigen-
values of g

=
. For the c director, we employ the parametriza-

tion �41�

c̃ = �c̃1, c̃2� = �S,0� . �3.2�

Throughout this section we can omit the bending energy
�2.21�; the higher-derivative bending terms do not influence
the mean-field phase diagram because the equilibrium metric
tensor is certainly uniform as is the equilibrium c director.

Before embarking on the actual minimization proce-
dure, we would like to comment on the connection between
our model and �4 models. Introducing 31 matrices ��
= ��1 ,�2 ,�3�= �g1 ,g2 ,S2� and t�= �t , t ,r /2�, and the symmetric
33 matrix

C= =  B + � B − � − �
1 + 
2/2�
B − � B + � − �
1 − 
2/2�

− �
1 + 
2/2� − �
1 − 
2/2� v/2
� ,

�3.3�

our model elastic energy can be written as

f = t� · �� +
1

2
�� · C= �� . �3.4�

This is the generic form of all generalized �4 models, the
most prominent example of which is the anisotropic antifer-
romagnet with two competing order parameters �42�. For the
phase behavior of any of these models it is crucial whether
the coupling matrix C= is positive definite or not. If C= is
positive definite, all transitions in the mean-field phase dia-
gram are continuous. Otherwise, one can have first-order
transitions. In the antiferromagnet, for example, one has four
second-order lines meeting in a tetracritical point if C= is
positive whereas one has two second-order lines and one
first-order line meeting in a bicritical point if this is not the
case. We will see shortly that C= is positive definite in our
model and thus all transitions in our mean-field phase dia-
gram are continuous. Recalling from the beginning of this
section that we anticipate five phases, we therefore expect to
find five second-order lines meeting in a pentacritical point.

For the actual minimization, we find it most convenient to
write the total elastic energy in the following form,
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f = f �1� + f �2�, �3.5a�

where

f �1� =
1

2
B��1 + �2 − �1 − �2�2 +

1

2
���1 − �2 − �1 + �2�2,

�3.5b�

f �2� =
1

4
vR��3 + rR/vR�2. �3.5c�

Here, we dropped inconsequential constant terms. �1 and �2
are abbreviations for

�1 =
� + �

2
�3 −

t

2B
, �3.6a�

�2 =
� − �

2
�3 −

t

2B
, �3.6b�

where �=
1 /B and �=
2 / �2��. Note that �1��2. Note also
that with our assumed hierarchy of magnitudes, ���. rR
and vR are renormalized versions of the elastic constants of
the tilt energy,

rR = r + 2

1

B
t , �3.7a�

vR = v − 2

1

2

B
−


2
2

2�
. �3.7b�

Equations �3.5a�, �3.5b�, and �3.5c� show the total elastic
energy in its diagonalized form. From it, we can read off the
eigenvalues of C= , namely B, �, and 1

2vR. Knowing that B and
� are positive, we conclude that C= is indeed positive definite
if vR�0, which is the case for our assumed hierarchy of
magnitudes.

The energy f �1� has a simple geometrical interpretation
that provides for intuitive guidance in the minimization pro-
cess. When viewed in the ��1 ,�2� plane, the contours of con-
stant f �1� for fixed �1 and �2 are ellipses centered about the
point ��1 ,�2� with their short axis along 1/	2�1,1� and their
long axis along 1/	2�1,−1�. Due to �1��2, there are three
qualitatively different cases: �i� �1 ,�2�0, �ii� �1�0,�2	0,
and �iii� �1 ,�2	0. In case �i�, f �1� is minimized by �1

0=�1
and �2

0=�2, corresponding to the SmA-flat or SmC-flat phase.
In case �ii�, it is minimized by some �1

0�0 and �2
0=0, corre-

sponding to the SmC-tubule phase. In case �iii�, f �1� is mini-
mal for �1

0=�2
0=0 corresponding to the SmA-crumpled or

SmC-crumpled phase.
Having discussed the possible equilibrium values qualita-

tively, we now turn to their actual calculation. The ��, �� I
��1,2 ,3�, are non-negative, i.e., we have to minimize f over
the non-negative octant of ��1 ,�2 ,�3� space. This can be done
straightforwardly by taking the derivatives of f , Eqs. �3.5a�,
�3.5b�, and �3.5c�, with respect to �� and then setting
�f /����=0, ��� I�, for any subset I� of I and setting ���=0
for the corresponding complement, ��� I�� I / I�. This way
we obtain sets of linear equations which are then solved sub-

ject to the condition ����0. This procedure leads to the fol-
lowing phases as described by the following equilibrium val-
ues ��

0:
�i� SmA-crumpled phase

�1
0 = �2

0 = �3
0 = 0, �3.8�

�ii� SmA-flat phase

�1
0 = �2

0 = �t�/�2B� , �3.9a�

�3
0 = 0, �3.9b�

�iii� SmC-crumpled phase

�1
0 = �2

0 = 0, �3.10a�

�3
0 = �r�/v , �3.10b�

�iv� SmC-flat phase

�1
0 = �� + �

2

rR

vR
+

t

2B
� , �3.11a�

�2
0 = �� − �

2

rR

vR
+

t

2B
� , �3.11b�

�3
0 = �rR�/vR, �3.11c�

�v� SmC-tubule phase

�1
0 =


1 + 
2/2

v̄R�B + ��
�r +

vt


1 + 
2/2
� , �3.12a�

�2
0 = 0, �3.12b�

�3
0 = �r̄R�/v̄R, �3.12c�

where

r̄R = r + 2

1 + 
2/2

B + �
t , �3.13a�

v̄R = v − 2
�
1 + 
2/2�2

B + �
. �3.13b�

The remaining task for assessing the mean-field phase
diagram is to determine the boundaries between these
phases. This can be done economically by setting �f /���

=0 and ���=0, where, as above, �� I and ��� I� for any
subset I� of I. Solving the so-obtained sets of linear equations
results in the following second-order phase transition lines
which we label as shown in Fig. 2 by capital roman numbers:
�a� line I

t = 0, r � 0, �3.14�

�b� line II

t = −
B

2
1
r, r � 0, �3.15�

�c� line III
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t =
B�� − ��

vR − 2
1�� − ��
r, r 	 0, �3.16�

�d� line IV

t = −

1 + 
2/2

v
r, r 	 0, �3.17�

�e� line V

r = 0, t � 0. �3.18�

All five second-order lines meet at the origin of �r , t� space.
Thus, this origin is a pentacritical point. Note that line III
approaches line II for vR approaching zero, i.e., the area in
phase space occupied by the SmC-flat phase becomes van-
ishingly small in this limit.

Having discussed the phase diagram in mean-field theory,
it is a legitimate and interesting question to ask inasmuch the
mean-field phase diagram will be modified by the effects of
fluctuations, self-avoidance, and random stresses. A definite
answer to this question requires renormalization group analy-
ses and is beyond the scope of this paper. Given the previous
work on isotropic and anisotropic polymerized membranes,
however, one can speculate what might happen. Paczuski,
Kardar, and Nelson �38� showed that the crumpled-to-flat
transition in isotropic membranes is driven first order by
fluctuations for embedding dimensions d	dc=219. Because
there is no in-plane anisotropy in the SmA-flat and
SmA-crumpled phases of smectic elastomer membranes, the
transition between these phases might also turn out to be a
fluctuation-driven first-order transition. In their work on per-
manently anisotropic membranes, Radzihovsky and Toner
�27� found that the crumpled-to-tubule transition remains
second order for all d and they concluded that fluctuations do
not change the topology of the phase diagram. This might
indicate that fluctuations will not modify qualitatively the
locus and the order of the transition between the SmC-flat

and the SmC-tubule and the SmC-tubule and the SmC-
crumpled phases.

IV. ELASTICITY OF THE SmC-FLAT PHASE

As mentioned in the Introduction, the elasticity of the
SmC-flat and the SmC-tubule phases is, among that of the
various phases featured in the phase diagram, Fig. 2, the
most interesting. In these phases, rotational symmetry in ref-
erence space is spontaneously broken and thus, due to the
Goldstone theorem, the membrane has zero-energy long-
wavelength modes. Here, we study these Goldstone modes in
some detail for the SmC-flat phase.

In Sec. III we learned that the SmC-flat phase is charac-
terized by an equilibrium metric tensor with two different
and nonvanishing eigenvalues g1

0�g2
0�0 and a nonvanish-

ing equilibrium c director, i.e., S0�0. To keep our discussion
of the elasticity of the SmC-flat phase as simple as possible,
we choose our bases for the reference and target spaces such
that êx� ê1 and êy � ê2 are along the eigenvectors pertaining
to g1

0 and g2
0, respectively. With these choices, the equilib-

rium or reference conformation of the SmC-flat membrane is
characterized by

R� 0�x� = �1xêx + �2yêy , �4.1�

where �1=	g1
0 and �2=	g2

0. To describe deviation from this
equilibrium, it is useful to employ a two-dimensional elastic
displacement field u�x� with components ux�x� and uy�x� and
a one-dimensional out-of-plane undulation �height� field
h�x�:

R� �x� = ��1x + ux�x��êx + ��2y + uy�x��êy + h�x�êz, �4.2�

where êz= ê3. With this parametrization, the metric tensor
reads

g
=

= ��1
2 + 2uxx 2uxy

2uxy �2
2 + 2uyy

� , �4.3�

with the components of the strain tensor, Eq. �2.12�, given by

uxx =
1

2
�2�1�xux + �xu · �xu + ��xh�2� , �4.4a�

uxy =
1

2
���1 + �xux��yux + ��2 + �yuy��xuy + �xh�yh� ,

�4.4b�

uyy =
1

2
�2�2�yuy + �yu · �yu + ��yh�2� . �4.4c�

For the c director, we use parametrization

c̃ = �� + �c̃x,�c̃y� , �4.5�

with �=S0, and with �c̃x and �c̃y describing longitudinal and
transversal deviations from equilibrium, respectively.

Now, we expand the elastic energy about the SmC-flat
ground state by inserting the metric tensor and the c director

t

r

SmC-tubule
SmA–flat

I

II

V

IV

III Sm
C
–fl

at

SmC–crumpled
SmA–crumpled

FIG. 2. Schematic phase diagram of a smectic elastomer mem-
brane in mean field theory. There are five phases, viz., SmA-flat,
SmC-flat, SmA-crumpled, SmC-crumpled, and SmC-tubule phases
separated by second-order phase transitions �solid lines�. The five
second-order lines meet at the origin, which, therefore, is a penta-
critical point.
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as parametrized, respectively, by Eqs. �4.3� and �4.5� into the
elastic energy �2.17�. To guarantee that �1, �2, and � describe
the true SmC-flat ground state, they have to satisfy equations
of state determined by the condition that terms in the devia-
tion �f of the elastic energy from its equilibrium value in the
SmC-flat phase that are linear in uxx, uyy, and �c̃x must van-
ish,

t + B��1
2 + �2

2� + ���1
2 − �2

2� − �
1 + 
2/2��2 = 0, �4.6a�

t + B��1
2 + �2

2� − ���1
2 − �2

2� − �
1 − 
2/2��2 = 0, �4.6b�

�r + v�2 − 2
1��1
2 + �2

2� − 
2��1
2 − �2

2��� = 0. �4.6c�

Given that these equations of state are satisfied, we obtain

�f = v�2��c̃x�2 − 2��2
1 + 
2�uxx + �2
1 − 
2�uyy��c̃x

+ 8��uxy −
�1

2 − �2
2

2�
�c̃y�2

+ 2�B + ���uxx
2 + uyy

2 �

+ 4�B − ��uxxuyy �4.7�

to harmonic order in the strains and the �c̃a. In the spirit of
Landau theory, due to the term v�2��c̃x�2, the longitudinal
deviation �c̃x is a massive variable and, therefore, the relax-
ation of �c̃x cannot be the origin of the anticipated softness
of the SmC-flat phase. Thus, we integrate this massive vari-
able out, i.e., we replace it by its equilibrium value in the
presence of strain, which leads to

�f = 8��uxy −
�1

2 − �2
2

2�
�c̃y�2

+ 2�B + � − 2
�
1 + 
2/2�2

v
�uxx

2

+ 2�B + � − 2
�
1 − 
2/2�2

v
�uyy

2

+ 4�B − � − 2
�
1 + 
2/2��
1 − 
2/2�

v
�uxxuyy . �4.8�

This equation shows how �c̃y can relax locally to eliminate
the dependence of the elastic energy on uxy. In other words,
a smectic elastomer membrane in the SmC-flat phase is soft
with respect to shear in the plane of the membrane.

The strain u= describes distortions relative to the new
SmC-flat reference state measured in the coordinates of the
old SmA-flat reference state. However, it is more intuitive
and more customary to use the natural coordinates x�=Rx

0

=�1x and y�=Ry
0=�2y of the new state. Expressed in terms of

the strain u=�, whose components are related to those of u= by
uxx=�1

2uxx� , uxy =�1�2uxy� and uyy =�2
2uyy� , the elastic energy can

be written as

�f =
1

2
Cxxxx�uxx� �2 +

1

2
Cyyyy�uyy� �2 + Cxxyyuxx� uyy� +

1

2
�xx��x�

2h�2

+
1

2
�yy��y�

2h�2 + �xy��y�
2h���x�

2h� +
1

2
Ky��y�

2ux�2

+
1

2
Kx��x�

2uy�2, �4.9�

where �x� and �y� are abbreviations for � / ��x�� and � / ��y��,

respectively. The elastic constants of the stretching terms are
given by

Cxxxx = 4�1
4�B + � − 2

�
1 + 
2/2�2

v
� , �4.10a�

Cyyyy = 4�2
4�B + � − 2

�
1 − 
2/2�2

v
� , �4.10b�

Cxxyy = 4�1
2�2

2�B − � − 2
�
1 + 
2/2��
1 − 
2/2�

v
� .

�4.10c�

As already pointed out above, there is no term of the type
Cxyxy�uxy� �2 because the membrane shear modulus Cxyxy van-
ishes as a result of the broken rotational symmetry of the
SmC-flat phase. Due to this soft elasticity, we added in Eq.
�4.9� bending terms stemming from the bending energy
�2.21� to ensure mechanical stability. As can be easily
checked, the bending constants are given by �xx=�1

4K, �yy
=�2

4K, and so on.
Our final elastic energy �4.9� is identical in form to the

harmonic elastic energy of two-dimensional nematic elas-
tomer membranes in their flat phase. The only differences lie
in the values of the elastic constants. Nematic elastomer
membranes, including their generalizations to D-dimensional
nematic-flat membranes in d-dimensional embedding space,
have been studied in detail in Ref. �28�. For example, Ref.
�28� contains a detailed analysis of correlations and fluctua-
tions in mean-field theory. These results can be transcribed
directly to SmC-flat membranes with the only differences
residing in the specific values of the elastic constants. To
save space, we refrain here from further commenting on cor-
relations and fluctuations, and refer directly to Ref. �28�.

Generically, fluctuation effects are strong in soft phases.
Fluctuations drive elastic nonlinearities, which are often neg-
ligible in systems without soft elasticity, to qualitatively
modify the elasticity through a Grinstein-Pelcovits–type
renormalization �43�. As a consequence of this renormaliza-
tion, the elasticity becomes anomalous with length-scale-
dependent elastic constants �in the form of power laws with
universal scaling exponents or logarithmic corrections, de-
pending on dimensionality� and universal Poisson ratios.
Reference �28� presents a renormalization group study of
fluctuation effects in the flat phase of nematic elastomer
membranes. Because this phase and the SmC-flat phase share
the same macroscopic symmetries, we expect their anoma-
lous elasticity to be governed by the same universal quanti-
ties, for which we refer to �28�. As far as self-avoidance is
concerned, it is known that this effect is irrelevant in physi-
cal dimensions for flat permanently anisotropic polymerized
membranes �27�. We expect this irrelevance also to hold for
flat nematic and SmC elastomer membranes.

V. ELASTICITY OF THE SmC-TUBULE PHASE

As in the SmC-flat phase, rotational symmetry is sponta-
neously broken in the SmC-tubule phase and, therefore, also
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the SmC-tubule phase should be expected on grounds of the
Goldstone theorem to exhibit soft elasticity. Here, we will
study the elasticity of the SmC-tubule phase in some detail.

First, let us recall that the SmC-tubule phase is character-
ized by an equilibrium metric tensor with one vanishing and
one positive eigenvalue, g1

0�0, g2
0=0, and a nonvanishing

equilibrium c director, S0�0. Choosing our basis so that êx
is along the eigenvector associated with g1

0, the reference
conformation of the SmC-tubule phase is characterized by

R� 0�x� = �xêx, �5.1�

where �=	g1
0. To describe distortions, we here employ a one-

dimensional elastic displacement field u�x� and a two-
dimensional height field h�x� with components hy�x� and
hy�x�. With this parametrization, we have

R� �x� = ��x + u�x��êx + hy�x�êy + hz�x�êz �5.2�

for the target space coordinate of the mass point x after dis-
tortion and

g
=

= ��2 + 2uxx 2uxy

2uxy 2uyy
� �5.3�

for the corresponding metric tensor. The components of the
strain tensor featured in Eq. �5.3� read

uxx =
1

2
�2��xu + ��xu�2 + �xh · �xh� , �5.4a�

uxy =
1

2
��� + �xu��yu + �xh · �yh� , �5.4b�

uyy =
1

2
���yu�2 + �yh · �yh� . �5.4c�

For the c director, we can use the same parametrization as for
the SmC-flat phase, see Eq. �4.5�.

Next, we substitute Eqs. �5.3� and �4.5� into the elastic
energy �2.17� and expand to harmonic order in the strains
and �c̃a. Because � and � characterize the equilibrium values
of the metric tensor and the c director, they satisfy equations
of state,

t + �B + ���2 − �
1 + 
2/2��2 = 0, �5.5a�

�r + v�2 − �2�
1 + 
2/2��2��� = 0, �5.5b�

such that there are no terms linear in uxx or �c̃x in the ex-
panded elastic energy:

�f = 2�
2�2 − 2��2�uyy + 2�B + ���uxx
2 + uyy

2 �

+ 4�B − ��uxxuyy + 8�uxy
2 + v�2��c̃x�2 + 
2�2��c̃y�2

− 4�
1 + 
2/2��uxx�c̃x − 4�
1 − 
2/2��uyy�c̃x

− 4
2�uxy�c̃y . �5.6�

Comparing Eq. �5.6� to Eq. �4.7�, we note the following
qualitative difference: in the case of the SmC-flat phase, the
terms depending on uxy and �c̃y combine to form a complete

square; in the case of the SmC-tubule phase they do not.
Hence, in the latter case the relaxation of �c̃y cannot elimi-
nate the dependence of the elastic energy on uxy entirely. To
determine what kinds of deformation are actually soft in this
phase, we now switch from the strains to the elastic displace-
ment and height fields:

�f = u�2��c̃x�2 − 4�
1 + 
2/2����xu�c̃x + 
2�2��c̃y −
�

�
�yu�2

+ 2�B + �����xu�2 + �
2�2 − 2��2��yh · �yh , �5.7�

where we discarded all terms of higher than harmonic order.
Equation �5.7� makes it transparent that �c̃y can relax locally
to �c̃y = �� /���yu such that the dependence of the elastic en-
ergy on �yu is eliminated. Note that �yu is, up to constants,
the linear part of the shear strain uxy. Therefore, the
SmC-tubule phase exhibits soft elasticity with respect to this
shear provided that it is small enough such that its nonlinear
contributions can be neglected. As announced above, the ori-
gin of this softness is spontaneous breaking of the rotational
symmetry of the initial SmA-flat phase due to SmC ordering.
Another observation that we make from Eq. �5.7� is that �c̃x
is a massive variable, as it is in the SmC-flat phase. Thus, we
integrate it out, i.e., we replace it by its equilibrium value
�c̃x=2�
1+
2 /2�� / �v���xu. Another step that is worthwhile
taking at this point is to switch from x and y, which still
pertain to the initial SmA-flat phase, to the natural coordi-
nates x�=Rx

0=�x and y�=y of the SmC-tubule phase. Even-
tually, we obtain

�f =
1

2
Bu��x�u�2 +

1

2
Bh�y�h · �y�h +

1

2
Ku��y�

2u�2

+
1

2
Kh�x�

2h · �x�
2h , �5.8�

where �x�=� / ��x��, �y�=�y, and where we added bending
terms stemming from Eq. �2.21� to ensure mechanical stabil-
ity under soft deformations. The elastic constants of the
stretching terms are given by

Bu = 4�4�B + � − 2
�
1 + 
2/2�2

v
� , �5.9a�

Bh = 2�
2�2 − 2�2�� , �5.9b�

and the bending moduli are given by Ku=K and Kh=�4K.
Equation �5.8� is identical in form to the harmonic elastic

energy of the nematic-tubule phase that has been studied
extensively in Ref. �29�. The only differences reside in the
specifics of the elastic constants. Therefore, macroscopic
properties of SmC-tubule and nematic-tubule membranes are
qualitatively the same in mean-field theory, at least as far as
they can be captured by a model elastic energy in terms of
elastic displacement and height fields only. This applies, for
example, to the Gaussian correlations and fluctuations of the
displacement and height fields. For details on these, we refer
to Ref. �29�.
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Fluctuations will presumably lead via a Grinstein-
Pelcovits-type renormalization to anomalous elasticity of the
SmC-tubule phase. Because the nematic-tubule and the
SmC-tubule phases have the same macroscopic symmetries,
the universal quantities characterizing the anomalous elastic-
ity of the two phases are expected to be the same. To date, no
renormalization group study of these universal quantities ex-
ist, although Ref. �29� presents a minimal model that could
be used as a vintage point for such a study. Self-avoidance is
known to be relevant in physical dimensions for the tubule
phase in permanently anisotropic polymerized membranes
�27�. We expect this relevance also for the tubule phases of
nematic and SmC elastomer membranes.

VI. CONCLUDING REMARKS

In summary, we have developed a model for smectic elas-
tomer membranes which includes elastic and liquid-
crystalline degrees of freedom. Based on our model, we de-
termined the qualitative phase diagram of a smectic
elastomer membrane using mean-field theory. This phase
diagram comprises five phases, viz., SmA-flat,
SmA-crumpled, SmC-flat, SmC-crumpled, and SmC-tubule
phases. Transition between adjacent phases are second-order
transitions. The harmonic elasticity of the SmC-flat and
SmC-tubule phases is qualitatively the same �up to values of
elastic constants� as that of the nematic-flat and the nematic-
tubule phases, respectively, in nematic elastomer mem-
branes. In particular, because they are all associated with a
spontaneous breaking of in-plane rotational symmetry, these
phases all exhibit soft elasticity, with the softness of the flat

phases being qualitatively different from that of the tubule
phases.

As far as future directions are concerned, it should be
worthwhile to go beyond mean-field theory and to study the
effects of nonlinear elasticity and thermal fluctuation in
renormalized field theory. Moreover, it should be interesting
to proceed to a more realistic model by including self-
avoidance and random stresses. Fluctuations, self-avoidance,
and random stresses will lead to qualitative modifications of
at least some of our results and, therefore, understanding
them will be one of our goals for future research.

As mentioned in the introduction, measurements of the
elastic properties of thin films of smectic elastomers have
been performed using a balloon geometry. In Ref. �25� the
authors find that for a chiral SmC* elastomer film the balloon
radius as a function of pressure deviates from the predictions
of a simple phenomenological �Mooney-Rivlin� model and
they hint that this deviation is related to soft elasticity. We
hope that our work motivates further experiments investigat-
ing the soft elasticity of smectic elastomer membranes in
more detail. Moreover, we hope to encourage experiments on
the phase behavior of smectic elastomer membranes that
could be compared to our predictions for their phase dia-
gram.
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